Optimization
Representing Inequalities

- used to represent a situation where there is more than one solution - graphically, this is a region (shaded). ie $x \geqslant 5$

Signs i Words:

- less than <
- greater than $>$
- maximum of \leqslant
- minimum of \geqslant
- at most \leqslant
- at least \geqslant
- no more than \leqslant

Basics - be sure to always define variables

- write express ion
- determine the sign
ex. There are at least 12 apples is oranges in the fivit basket.

*

ex. There are at least twice as many girls as boys

$$
\begin{aligned}
& x=\text { girls } \\
& y=\text { guys }
\end{aligned}
$$

$$
\begin{array}{cc}
20 & =2(10) \\
\downarrow & \downarrow \\
x & y \\
x \geqslant 2 y
\end{array}
$$

ex. Your chem mark was a minimum of 12 marks higher than your math mark.

Chem: x
ex.

$$
\frac{1}{62} x+\frac{50+12}{y+12}
$$

$$
\text { math }=y
$$

Graphing Inequalities
Steps: (1) identify variables; write the equations
(1) Graph your inequality $\rightarrow\langle$ of $\rangle \rightarrow$ dotted line
$\leqslant \approx \geqslant \rightarrow$ solid line
(3) Shade the solution set; check with test point if required
$>\geqslant \rightarrow$ shade above lupwards
$<, \leqslant \rightarrow$ shade downwards
ex. There are at least 10 electricians: painters fixing the school.

$$
\begin{aligned}
& \text { Electricians }=x \\
& \text { Paintus }=y
\end{aligned}
$$

$$
y=a x+b
$$

$$
x+y \geqslant 10 \quad \rightarrow \quad y=-x+10
$$

$$
\frac{-1}{1} \frac{\text { rise }}{\text { run }}
$$

ex. Find the rule

$$
\begin{array}{ll}
a=\frac{2}{3} \\
y=\frac{2}{3} x+b
\end{array},\left\{\begin{array}{l}
y< \\
5=\frac{2}{3}(2)+b
\end{array} \quad b=\frac{11}{3}\right.
$$

$$
y<\underbrace{\frac{2}{3} x+\frac{11}{3}>}
$$

Systems of Inequalities

- this is where shaded regions overlap
points of intersection occur when n two solid lines intersect (these are the only real solutions)

ex. Graph! solve for points of intersection:
a)

$$
\begin{aligned}
& y \geqslant 2 x \\
& y \leqslant-x+3
\end{aligned}
$$

b)

$$
\begin{gathered}
2 x+y<4 \\
x \geqslant 1
\end{gathered}
$$

c)

$$
\begin{aligned}
& x+y \geq 5 \\
& x+1 \leq y
\end{aligned}
$$

Target Objectives:

- target is a goal of the optimization
- an objective functionary" or "function rule" or "Z rule" is an expression that calculates the goal

Steps: - graph all inequalities to make a polygon of constraints

- determine the vertices (points of intersection)
- plug your vertices into the objective rule
- determine which coordinates optimize the rule
ex. James loves his stuffed animals. He has stuffed teddy bear and stuffed dinosaurs. He estimates that he has a minimum of 10 stuffed animals but a maximum of 20 . He has less than or equal to 6 Teddy Bears. He has at least 5 more stuffed dings than teddys. He estimates each teddy is worth $\$ 25$ and each dino is worth $\$ 15$. What is the maximum value of his collection? $\quad x=T B, y=d i n o s$
$\underset{\substack{\text { Target } \\ \text { Objective }}}{\text { Tin }} \boldsymbol{Z}$
(1) $x+y \geq 10^{-}$
(2) $x+y \leqslant 20$

A: $(0,20)$
B. $(6,14)$

C: $(6,11)$
$\sqrt{(3)} x<1$

$$
\begin{aligned}
& \sqrt{(2)} \quad x+y \leqslant 20 \\
& \sqrt{3} \quad x \leqslant 6 \\
& \sqrt{4} \quad y \geqslant 1 x+5
\end{aligned}
$$

$$
\begin{aligned}
& C:(6,11) \\
& D:(2.5,7.5) \rightarrow(2,8) \\
& E:(0,10)
\end{aligned}
$$

Max value of James' collection:

$$
\begin{aligned}
& Z=25 x+15 y \\
& A: 25(0)+15(20)=300 \\
& B: 25(6)+15(14)=360 \\
& C: 25(6)+15(11)=315 \\
& D: 25(2)+15(8)=170 \\
& E: 25(0)+15(10)=150
\end{aligned}
$$

$\$ 360$ is the max value of Jame's collection
if he has 6 teddy s. 14 dino.

